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Countable and uncountable boundaries in chaotic scattering
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~Received 5 February 2002; published 22 October 2002!

We study the topological structure of basin boundaries of open chaotic Hamiltonian systems in general. We
show that basin boundaries can be classified as either type I or type II, according to their topology. LetB be the
intersection of the boundary with a one-dimensional curve. In type I boundaries,B is a Cantor set, whereas in
type II boundariesB is a Cantor set plus a countably infinite set of isolated points. We show that the occurrence
of one or the other type of boundary is determined by the topology of the accessible configuration space, and
also by the chosen definition of escapes. We show that the basin boundary may undergo a transition from type
I to type II, as the system’s energy crosses a critical value. We illustrate our results with a two-dimensional
scattering system.
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Transient chaos is a common phenomenon in open
tems. It is characterized by the presence of a fractal se
unstable orbits in the phase space~the invariant set!, which
causes nearby orbits to behave erratically, and gives ris
the sensitivity of the dynamics to initial conditions that is t
characteristic feature of chaos@1#. Transient chaos is found
in a multitude of important physical systems, such as sca
ing systems@2#, systems with escapes@3#, dissipative sys-
tems @4#, etc. One of the most important concepts in op
systems is that ofescapes, which correspond to differen
asymptotic states the system may reach after the transie
through ~we include attractors in this definition!. There are
usually many possible definitions of escape for any giv
system. For each escape, itsbasin is defined as the set o
points in phase space that evolves to that escape. In
dimensional scattering, for example, one might associate
cape 1 with all orbits with scattering angle in the interv
between 0 andp, and escape 2 with those with scatteri
angle betweenp and 2p. In this paper, the escapes are d
fined by a set of surfaces on the configuration space, an
initial condition belongs to the basin of a particular escap
its orbit crosses the corresponding surface for the last t
before exiting the scattering region toward infinity. In th
above example, the escapes 1 and 2 correspond to the
halves of a circle with a large radius~the radius has to be
large enough so that the potential at all points on the circl
negligible!. Of particular interest is the geometric structu
of the boundary that separates the different escape ba
which is of great importance, both theoretically and in app
cations@5#. In particular, for three or more escapes, boun
aries may have the so-calledWada property, which means
that every neighborhood of any boundary point conta
points belonging to at least three different basins@6#. There
have been many studies concerning the structure of b
boundaries for many particular systems and particular d
nitions of escapes. The important question of how the str
ture of the invariant set and the choice of the escapes d
mine the geometry of the basin boundary, however, has
been fully addressed until now. In this article, we study in
general fashion the geometry of basin boundaries for cha
Hamiltonian systems, how it is affected by the choice
escapes~that is, the choice of the surfaces on the configu
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tion space that define the escapes!, and how it reflects the
fractal structure of the invariant set. We find that bas
boundaries of typical chaotic systems can be classified as
of two types, according to their topology; we refer to them
type I and type II boundaries. For convenience, we define
set B to be the intersection of the boundary with a on
dimensional manifold in phase space. In type I boundarieB
is a Cantor set, consisting of points on the stable manifold
the invariant set; each point inB is the accumulation of othe
points in the set, and there is no isolated point. In this ca
the boundary is everywhere nonsmooth, and every blowu
neighborhoods of any boundary point reveals further str
ture. In type II boundaries, the setB consists of two compo-
nents, which we callBc andBs . One of the components (Bc)
is a Cantor set corresponding to the intersection of the o
dimensional curve used in the definition ofB with the stable
manifold of the invariant set. The other component (Bs) is a
countable~infinite! set of isolated points with limit set on
Bc . Contrary to type I boundaries, type II boundaries ha
smooth parts, corresponding toBs . Moreover, there are
points belonging toBs arbitrarily close to every point inBc ,
and therefore blowups of any neighborhood of a bound
point will always contain smooth parts; the smooth and fr
tal parts of the boundary are mixed at all scales. We sh
that for a given Hamiltonian system, the occurrence of one
the other type of boundary depends on the presence or
sence of forbidden regions in the configuration space.
other words, the topology of the boundary depends on
topology of the configuration space. More precisely,
show that if for a given energy there is no forbidden regi
~and therefore the whole configuration space is accessib
the system!, then the boundary is always of type II, for an
choice of escapes. A necessary~but not sufficient! condition
for the occurrence of type I boundaries is the presence
forbidden regions. In this case, we show that if the surfa
defining distinct escapes intersect only within the forbidd
regions, then the boundary is always of type I. If any tw
such surfaces intersect in the accessible region, then
boundary is usually of type II~although it can also be of type
I in some cases!. We illustrate our findings with a two-
dimensional scattering system. We show that this system
sents a topological bifurcation~metamorphosis! in which the
©2002 The American Physical Society14-1
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boundary changes from type II to type I as the energy of
incident particle crosses a critical value. We argue that
phenomenon is general, and is expected to be found in m
other systems.

We now introduce a specific system to better explain
results. We choose a system consisting of a particle mov
on a two-dimensional plane under a potentialV. The poten-
tial is taken to be the superposition of three identical ‘‘hills

V~x,y!5(
i 51

3

V0~x2xi ,y2yi !, ~1!

with each ‘‘hill’’ V0 being spherically symmetric, and havin
a repulsive core surrounded by an attractive region. Our
sults do not depend on the particular form ofV0. For defi-
niteness, we use the following form forV0:

V0~x,y!5A1e2r 2/2s1
2

2A2e2r 2/2s2
2
, ~2!

where A1 , A2 , s1 , and s2 are positive constants, an
r 25x21y2. In our example, we useA152.1, A2

52, s150.25, s250.5. With this choice,V0 has a nar-
row central peak with a maximum ofEm50.1 at the origin,
surrounded by an attractive well. For particles with energE
less than 0.1~but greater than 0!, there is a forbidden region
around the origin, where the particle cannot penetrate.
E.0.1, there is no forbidden region. We choose the th
‘‘hills’’ in Eq. ~1! to be placed on the vertices of an equila
eral triangle: x252x154, y15y250, x350, y354A3.
Since the distance separating the vertices of the triang
much greater than boths1 ands2 , the potentials of distinct
hills essentially do not overlap. This means that forE
,Em , there are three forbidden regions around the verti
of the triangle, whereas ifE.Em there is no forbidden re
gion, and the whole plane is accessible to the particle. S
we are interested in the scattering regime, we only cons
particles withE.0. We have verified that the scattering
chaotic below a critical energyEch , with Ech.0.1. If the
hills were purely repulsive, we would haveEch50.1 @7#, but
because of the attractive part, there is a fractal invariant
even in the absence of forbidden regions.

We now consider escape basins in this system. We use
sides of the triangle~i.e., the segments connecting the cent
of the three hills! to define three different escapes~see Fig.
1!. We label the sides of the triangle as in Fig. 1, and
every trajectory that enters the triangle, its escape is defi
by the label of the last segment it crosses before it exits
scattering region towards infinity. We will now study th
structure of the escape basins forE,Em andE.Em .

We consider the caseE,Em first. In this case, there ar
three disconnected forbidden regions surrounding each
tex, schematically shown in Fig. 1 by the dashed circl
Consider now any two initial conditionsa and b such that
they belong to different basinsS1 and S2 (S15” S2). Now
take any pathC in the phase space~restricted to the energy
surfaceE5const), connectinga and b. We will show that
somewhere onC lies a point belonging to the escapeS3,
with S35” S1 ,S2. To show this, we followC, starting ata and
going towardb. Consider now the orbits corresponding
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the initial conditions on this path. Since the only comm
point to the two segments corresponding to the escapeS1
andS2 lies within a forbidden regionF, as we followC from
a to b the orbits will eventually come close toF. SinceF is
impenetrable to incoming particles, these orbits will suf
large deflections in their trajectories. At some point on t
path, the deflection will be large enough to make the or
leave the scattering region through the third escapeS3. This
reasoning is illustrated in Fig. 1 with the set of orbits inc
dent on the upper forbidden region. From the above,
conclude that any neighborhood of every boundary point
C has points belonging to all three escapes. Since the ab
reasoning is valid for all pathsC, we conclude that the
boundary has the Wada property. This implies, among o
things, thatB ~the intersection of the basin boundary withC
or with any other curve! has no isolated points, because is
lated boundary points would have neighborhoods with po
belonging to only two basins, contradicting the above. The
fore, B is a Cantor set, and this is a type I boundary.B
consists of points that never leave the scattering region
other words,B is on the stable manifold of the invariant se
Notice that in the above arguments we used the fact
forbidden regions exist, and that the segments defining
ferent escapes intersect only within the forbidden regions
that orbits cannot go smoothly from one escape to anothe
we change the initial conditions.

Consider now the caseE.Em , with E,Ech , so that the
scattering is still chaotic, but now there are no forbidd
regions, and the wholeR2 plane is accessible to the particle
In this case, one-parameter families of orbits go smoot
from one escape to the other, as depicted schematicall
Fig. 1 with the trajectories incident on the lower right forbi
den region. In this case, there are isolated boundary point
B, corresponding to orbits that leave the scattering reg
along trajectories that cross the triangle exactly on one of
vertices. Besides the isolated points,B also includes a Canto

FIG. 1. Schematic representation of the potential~1!. The three
hills are centered on the vertices of the triangle. The sides 1, 2,
3 define three escapes. ForE,Em , the forbidden regions surround
ing each vertex are represented by the dashed circles. The s
trajectories incident on the upper circle illustrates the effect of
forbidden regions on families of orbits. The case ofE.Em , when
there is no forbidden region, is illustrated by the trajectories on
lower right vertex of the triangle. In the numerical calculations, t
initial conditions are picked on the segmentA given by y5const
52, 21.5,x,1.5, with initial velocity in the directionu.
4-2
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FIG. 2. Picture of the basins
corresponding to the three escap
defined in Fig. 1, for E50.15
.Em . The initial conditions are
picked as explained in Fig. 1 an
in the text, on a 5003500 grid.
Points are colored white if they
belong to basin 1, gray if they be
long to basin 2, and black if they
belong to basin 3, in the notation
of Fig. 1. ~b! is a magnification of
a region of~a!. The region shown
in ~b! clearly has a smooth bound
ary.
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setBc , corresponding to points lying on the stable manifo
of the fractal invariant set. Consider now a small neighb
hood of a pointP on Bc . Points in this neighborhood corre
spond to orbits that stay a long time within the scatter
region, following closely an orbit in the invariant set for
long time, before escaping. Small variations of the init
conditions in this region will typically lead to large chang
in the asymptotic state reached by the orbit, and con
quently to a different escape. We expect that in any nei
borhood ofP we can find a path of initial conditions tha
leads from a basin to another smoothly, as explained ab
This means that the isolated boundary points accumulat
the fractal set of points on the stable manifold of the inva
ant set. We conclude that forE.Em ~and E,Ech), the
boundary is of type II. The isolated points of the bounda
not present in type I boundaries, owe their existence to
absence of forbidden regions in the configuration space.

From the above discussion, we see that as the energ
incoming particles crosses the critical valueEm , the basin
boundary undergoes a topological transition from type
(E.Em) to type I (E,Em). We show that this transition
does indeed occur, through a numerical calculation of
basins. We take initial points lying on the segmentA shown
in Fig. 1, with initial velocities in the directionu, with 0
<u,2p; the magnitude of the velocity is fixed by the co
servation of energy. We integrate the equations of motion
a grid of 5003500 points, and we plot the escape as a fu
tion of the initial conditions using a different gray scale f
each escape, as explained in the caption of Fig. 2. The re
for E50.15.Em are shown in Fig. 2, and those forE
50.05,Em are displayed in Fig. 3. In Fig. 2~a!, we see that
there are regions where the three basins are very intrica
intertwined, corresponding to neighborhoods of the frac
part of the boundary, and we also see that there are sm
parts of the boundary where only two basins meet. Fig
2~b! shows a magnification of a smooth part of the bounda
Blowups of other regions show that smooth boundaries
present at all scales, and that they accumulate on the fra
parts of the boundary. In other words, we have a type
boundary, as expected. ForE,Em , however, regions of the
boundary that were smooth forE.Em now have a fine struc
ture, with points belonging to all three basins, due to
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presence of the forbidden regions, as explained above.
ure 3 shows a magnification of the same region displaye
Fig. 2~b!, but for E50.05, and we can see that the bounda
is no longer smooth. Further magnifications reveal struct
at all scales. Blowups of other regions in Fig. 3 show th
there are no smooth boundaries, showing that this is a ty
boundary, as it should be. As the energy drops fromE.Em
to E,Em , all points of the boundary that were former
smooth~nonfractal! become fractal, through the sudden cr
ation of new orbits in the invariant set. These new orb
correspond to the particle bouncing between the newly c
ated forbidden regions.

We note that, although we used the system described
Eqs.~1! and~2! to facilitate the discussion and to exempli
our reasoning, the connection between the topology of
basin boundary and the topology of the accessible confi
ration space uncovered by us is a general one, since
reasoning did not depend on any particular feature of
model. We therefore conclude that, in general, a ba
boundary is of type I if the points that separate differe
escapes lie within forbidden regions; otherwise the bound
is usually of type II~although it can be type I in some speci

FIG. 3. Same as Fig. 2, withE50.05,Em . The region shown
is the same as in Fig. 2~b!, and it has a fractal structure now.
4-3
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cases!. Systems with no forbidden regions~for a given en-
ergy! always have type II boundaries, whereas systems h
ing forbidden regions may admit type I boundaries. Not
that, even if forbidden regions are present, the boundary
be type II if the above condition on the definition of escap
is not satisfied. For instance, in the system~1!, if the sides of
the triangle in Fig. 1 are enlarged so that the vertices
outside the forbidden regions, we will have a type II boun
ary, even forE,Em . We have verified numerically that thi
is indeed the case.

Most of the basin boundaries studied in the literature
type I. Type II boundaries have been found in incompress
two-dimensional flow @8#, in maps @9#, and in three-
dimensional scattering@10#, discussed below.

We now make some final remarks. Type II basins can
have the Wada property, because they have smooth com
nents~although the fractal component of the basin may
Wada!. This means that systems can only have Wada ba
if there are forbidden regions in the configuration space~but
this is not a sufficient condition!. In the example presente
above, the type II–type I transition is also a non-Wad
Wada transition. An important and widely used definition
escapes in scattering systems is that in which each es
n
.

et
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corresponds to a range of the scattering anglef, such as the
example mentioned in the beginning of the paper. Each s
tering angle is associated with a point on a very large cir
centered on the scattering region. Each range off is thus
represented by an arc of this circle. Since the circle ha
large radius~it lies on the asymptotically free region, wher
the potential can be neglected!, it is very far away from any
forbidden region. We conclude that basins defined by ran
of the scattering angle are always type II basins~and conse-
quently non-Wada basins!. Finally, although we have re
stricted ourselves to systems with two degrees of freed
this choice was only made for convenience, and our ar
ments hold for higher dimensions also. In three-dimensio
potentials, for example, escapes are defined by t
dimensional surfaces, and the condition for the occurrenc
type I basins is that the one-dimensional intersections
those surfaces have to lie within forbidden regions. The ba
transition studied in@10# is actually a type I–type II transi-
tion, although this terminology was not used there. This tr
sition has a very different origin from the one we presen
here, and is a purely three-dimensional phenomenon.
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