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Countable and uncountable boundaries in chaotic scattering
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We study the topological structure of basin boundaries of open chaotic Hamiltonian systems in general. We
show that basin boundaries can be classified as either type | or type Il, according to their topol@jyeltae
intersection of the boundary with a one-dimensional curve. In type | boundBriesa Cantor set, whereas in
type Il boundarie® is a Cantor set plus a countably infinite set of isolated points. We show that the occurrence
of one or the other type of boundary is determined by the topology of the accessible configuration space, and
also by the chosen definition of escapes. We show that the basin boundary may undergo a transition from type
| to type Il, as the system’s energy crosses a critical value. We illustrate our results with a two-dimensional
scattering system.
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Transient chaos is a common phenomenon in open sysion space that define the escapeand how it reflects the
tems. It is characterized by the presence of a fractal set dfactal structure of the invariant set. We find that basin
unstable orbits in the phase spdtiee invariant sej, which  boundaries of typical chaotic systems can be classified as one
causes nearby orbits to behave erratically, and gives rise tof two types, according to their topology; we refer to them as
the sensitivity of the dynamics to initial conditions that is thetype | and type Il boundaries. For convenience, we define the
characteristic feature of chas]. Transient chaos is found setB to be the intersection of the boundary with a one-
in a multitude of important physical systems, such as scattedimensional manifold in phase space. In type | boundaBes,
ing systemg 2], systems with escapd8], dissipative sys- is a Cantor set, consisting of points on the stable manifold of
tems[4], etc. One of the most important concepts in openthe invariant set; each point Biis the accumulation of other
systems is that ofscapeswhich correspond to different points in the set, and there is no isolated point. In this case,
asymptotic states the system may reach after the transienttise boundary is everywhere nonsmooth, and every blowup of
through (we include attractors in this definitionThere are  neighborhoods of any boundary point reveals further struc-
usually many possible definitions of escape for any giverture. In type Il boundaries, the sBtconsists of two compo-
system. For each escape, itasinis defined as the set of nents, which we caB. andBg. One of the component8()
points in phase space that evolves to that escape. In twds a Cantor set corresponding to the intersection of the one-
dimensional scattering, for example, one might associate eslimensional curve used in the definition Bfwith the stable
cape 1 with all orbits with scattering angle in the interval manifold of the invariant set. The other componeBt)(is a
between 0 andr, and escape 2 with those with scattering countable(infinite) set of isolated points with limit set on
angle betweenr and 2. In this paper, the escapes are de-B.. Contrary to type | boundaries, type Il boundaries have
fined by a set of surfaces on the configuration space, and amooth parts, corresponding ;. Moreover, there are
initial condition belongs to the basin of a particular escape ifpoints belonging tdg arbitrarily close to every point iB.,
its orbit crosses the corresponding surface for the last timand therefore blowups of any neighborhood of a boundary
before exiting the scattering region toward infinity. In the point will always contain smooth parts; the smooth and frac-
above example, the escapes 1 and 2 correspond to the twal parts of the boundary are mixed at all scales. We show
halves of a circle with a large radiushe radius has to be that for a given Hamiltonian system, the occurrence of one or
large enough so that the potential at all points on the circle ishe other type of boundary depends on the presence or ab-
negligible. Of particular interest is the geometric structure sence of forbidden regions in the configuration space. In
of the boundary that separates the different escape basinsther words, the topology of the boundary depends on the
which is of great importance, both theoretically and in appli-topology of the configuration space. More precisely, we
cations[5]. In particular, for three or more escapes, bound-show that if for a given energy there is no forbidden region
aries may have the so-calld&fada property which means (and therefore the whole configuration space is accessible to
that every neighborhood of any boundary point containghe system then the boundary is always of type Il, for any
points belonging to at least three different badiis There  choice of escapes. A necessabyit not sufficient condition
have been many studies concerning the structure of basiior the occurrence of type | boundaries is the presence of
boundaries for many particular systems and particular defiforbidden regions. In this case, we show that if the surfaces
nitions of escapes. The important question of how the strucdefining distinct escapes intersect only within the forbidden
ture of the invariant set and the choice of the escapes deteregions, then the boundary is always of type I. If any two
mine the geometry of the basin boundary, however, has nauch surfaces intersect in the accessible region, then the
been fully addressed until now. In this article, we study in aboundary is usually of type llalthough it can also be of type
general fashion the geometry of basin boundaries for chaotit in some cases We illustrate our findings with a two-
Hamiltonian systems, how it is affected by the choice ofdimensional scattering system. We show that this system pre-
escapesthat is, the choice of the surfaces on the configurasents a topological bifurcatioimetamorphosisin which the
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boundary changes from type Il to type | as the energy of the

incident particle crosses a critical value. We argue that this

phenomenon is general, and is expected to be found in many
other systems.

We now introduce a specific system to better explain our
results. We choose a system consisting of a particle moving
on a two-dimensional plane under a potentfalThe poten-
tial is taken to be the superposition of three identical “hills”:

3
V(x,y)= El Vo(X—X; .y —Yi), (1)

with each “hill” Vq being spherically symmetric, and having g, 1. Schematic representation of the poter(ial The three
a repulsive core surrounded by an attractive region. Our reniiis are centered on the vertices of the triangle. The sides 1, 2, and
sults do not depend on the particular form\4f. For defi- 3 define three escapes. FBx E,,, the forbidden regions surround-

niteness, we use the following form fafy: ing each vertex are represented by the dashed circles. The set of
o 2 o trajectories incident on the upper circle illustrates the effect of the
Vo(x,y)=A,e 20— pA_g 20~ (2)  forbidden regions on families of orbits. The caseEof E,,, when

there is no forbidden region, is illustrated by the trajectories on the
whereA,, A_, o,, and o_ are positive constants, and lower right vertex of the triangle. In the numerical calculations, the
r’=x2+y?. In our example, we useA,=2.1, A_ initial conditions are picked on the segmehigiven byy=const
=2, 0,=0.25, o_=0.5. With this choiceV, has a nar- =2, —1.5<x<1.5, with initial velocity in the directiorg.
row central peak with a maximum &,,=0.1 at the origin,
surrounded by an attractive well. For particles with endfgy the initial conditions on this path. Since the only common
less than 0.1but greater than)Qthere is a forbidden region point to the two segments corresponding to the esc&pes
around the origin, where the particle cannot penetrate. Fogngds, lies within a forbidden regiof, as we followC from
E>0.1, there is no forbidden region. We choose the threg to b the orbits will eventually come close @ SinceF is
“hills” in Eq. (1) to be placed on the vertices of an equilat- jimpenetrable to incoming particles, these orbits will suffer
eral triangle: x,=—x;=4, y1=y,=0, X3=0, y3=4y3.  |arge deflections in their trajectories. At some point on the
Since the distance separating the vertices of the triangle igsath, the deflection will be large enough to make the orbit
much greater than boihr, ando _, the potentials of distinct |eave the scattering region through the third escapeThis
hills essentially do not overlap. This means that #r reasoning is illustrated in Fig. 1 with the set of orbits inci-
<En, there are three forbidden regions around the verticegient on the upper forbidden region. From the above, we
of the triangle, whereas E>E, there is no forbidden re- conclude that any neighborhood of every boundary point on
gion, and the whole plane is accessible to the particle. Since has points belonging to all three escapes. Since the above
we are interested in the scattering regime, we only consideeasoning is valid for all path€, we conclude that the
particles withE>0. We have verified that the scattering is boundary has the Wada property. This implies, among other
chaotic below a critical energg.,, with E;,>0.1. If the  things, thatB (the intersection of the basin boundary with
hills were purely repulsive, we would ha¥g,=0.1[7], but  or with any other curvehas no isolated points, because iso-
because of the attractive part, there is a fractal invariant s¢ated boundary points would have neighborhoods with points
even in the absence of forbidden regions. belonging to only two basins, contradicting the above. There-

We now consider escape basins in this system. We use tHere, B is a Cantor set, and this is a type | boundasy.
sides of the trianglé.e., the segments connecting the centersconsists of points that never leave the scattering region. In
of the three hill$ to define three different escapésee Fig. other wordsB is on the stable manifold of the invariant set.
1). We label the sides of the triangle as in Fig. 1, and forNotice that in the above arguments we used the fact that
every trajectory that enters the triangle, its escape is definefdrbidden regions exist, and that the segments defining dif-
by the label of the last segment it crosses before it exits théerent escapes intersect only within the forbidden regions, so
scattering region towards infinity. We will now study the that orbits cannot go smoothly from one escape to another as
structure of the escape basins < E,, andE>E,,. we change the initial conditions.

We consider the case<E,, first. In this case, there are Consider now the cade>E,,, with E<E,,, so that the
three disconnected forbidden regions surrounding each vescattering is still chaotic, but now there are no forbidden
tex, schematically shown in Fig. 1 by the dashed circlesregions, and the wholR? plane is accessible to the particles.
Consider now any two initial conditiona and b such that In this case, one-parameter families of orbits go smoothly
they belong to different basinS; and S, (S;#S,). Now  from one escape to the other, as depicted schematically in
take any pattC in the phase spadgestricted to the energy Fig. 1 with the trajectories incident on the lower right forbid-
surfaceE=const), connectin@ andb. We will show that den region. In this case, there are isolated boundary points on
somewhere orC lies a point belonging to the escajsg, B, corresponding to orbits that leave the scattering region
with S;#S;,S,. To show this, we followC, starting aa and  along trajectories that cross the triangle exactly on one of the
going towardb. Consider now the orbits corresponding to vertices. Besides the isolated poirBsalso includes a Cantor
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FIG. 2. Picture of the basins
corresponding to the three escapes
defined in Fig. 1, forE=0.15
>E,,. The initial conditions are
picked as explained in Fig. 1 and
in the text, on a 508500 grid.
Points are colored white if they
belong to basin 1, gray if they be-
long to basin 2, and black if they
belong to basin 3, in the notation
of Fig. 1. (b) is a magnification of
a region of(a). The region shown
in (b) clearly has a smooth bound-
ary.
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setB., corresponding to points lying on the stable manifoldpresence of the forbidden regions, as explained above. Fig-
of the fractal invariant set. Consider now a small neighbor-ure 3 shows a magnification of the same region displayed in
hood of a point® on B, . Points in this neighborhood corre- Fig. 2(b), but for E=0.05, and we can see that the boundary
spond to orbits that stay a long time within the scatteringis no longer smooth. Further magnifications reveal structure
region, following closely an orbit in the invariant set for a at all scales. Blowups of other regions in Fig. 3 show that
long time, before escaping. Small variations of the initialthere are no smooth boundaries, showing that this is a type |
conditions in this region will typically lead to large changes boundary, as it should be. As the energy drops flBmE,,

in the asymptotic state reached by the orbit, and consey E<E, | all points of the boundary that were formerly
quently to a different escape. We expect that in any neighsmgoth(nonfractal become fractal, through the sudden cre-
borhood ofP we can find a path of initial conditions that ation of new orbits in the invariant set. These new orbits
leads from a basin to another smoothly, as explained abov@grespond to the particle bouncing between the newly cre-
This means that the isolated boundary points accumulate ofyeq forbidden regions.

the fractal set of points on the stable manifold of the invari- \ye note that, although we used the system described by
ant set. We conclude that fdE>Ey (and E<E.p), the  Eqgs (1) and(2) to facilitate the discussion and to exemplify
boundary is of type Il. The isolated points of the boundary,q reasoning, the connection between the topology of the
not present in type | boundaries, owe their existence to thgasin boundary and the topology of the accessible configu-
absence of forbidden_ regions in the configuration space. ation space uncovered by us is a general one, since our
_ From the above discussion, we see that as the energy @basoning did not depend on any particular feature of the
incoming particles crosses the critical valg,, the basin  model. We therefore conclude that, in general, a basin
boundary undergoes a topological transition from type lpoundary is of type I if the points that separate different
(E>Ep) to type | (E<E). We show that this transition escapes lie within forbidden regions; otherwise the boundary

does indeed occur, through a numerical calculation of thgs ysually of type Ii(although it can be type I in some special
basins. We take initial points lying on the segmémshown

in Fig. 1, with initial velocities in the directior®, with O

< §<2m; the magnitude of the velocity is fixed by the con-
servation of energy. We integrate the equations of motion on
a grid of 500< 500 points, and we plot the escape as a func-
tion of the initial conditions using a different gray scale for
each escape, as explained in the caption of Fig. 2. The results
for E=0.15>E,, are shown in Fig. 2, and those fdt
=0.05<E,, are displayed in Fig. 3. In Fig.(3), we see that
there are regions where the three basins are very intricately
intertwined, corresponding to neighborhoods of the fractal
part of the boundary, and we also see that there are smooth
parts of the boundary where only two basins meet. Figure
2(b) shows a magnification of a smooth part of the boundary.
Blowups of other regions show that smooth boundaries are
present at all scales, and that they accumulate on the fractal 2.05
parts of the boundary. In other words, we have a type Il Ot 0';25 9.0
boundary, as expected. FBK E,,,, however, regions of the

boundary that were smooth f&> E,, now have a fine struc- FIG. 3. Same as Fig. 2, witB=0.05<E,,. The region shown
ture, with points belonging to all three basins, due to theis the same as in Fig.(B), and it has a fractal structure now.
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cases Systems with no forbidden regiorifor a given en-  corresponds to a range of the scattering arfglsuch as the
ergy) always have type Il boundaries, whereas systems hawexample mentioned in the beginning of the paper. Each scat-
ing forbidden regions may admit type | boundaries. Noticetering angle is associated with a point on a very large circle
that, even if forbidden regions are present, the boundary mayentered on the scattering region. Each range)aé thus
be type Il if the above condition on the definition of escapesepresented by an arc of this circle. Since the circle has a
is not satisfied. For instance, in the systéi if the sides of |5rge radiug(it lies on the asymptotically free region, where
the Frlangle in I_:lg. 1 are enlarged_so that the vertices ligne potential can be neglectedt is very far away from any
outside the forbidden regions, we will have a type Il bound-to hiqden region. We conclude that basins defined by ranges
ary, even folE<E,,. We have verified numerically that this of the scattering angle are always type Il bagimsd conse-
is indeed the case. . _ . quently non-Wada basinsFinally, although we have re-
Most of the basin bpundarles studied |n.th_e literature Atricted ourselves to systems with two degrees of freedom,
type I.' Type_II boundaries hgve been found in |n(;ompreSS|bI(?hiS choice was only made for convenience, and our argu-
Ejvivr(r)]_edr:gggz:osncittgr(i)r\:vb%%7 dlir;cgsligz ngiov‘:’/md in_three- ments.hold for higher dimensions also. In thre_e-dimensional
We now make some fi}]al remarks Typé Il basins canno _otent|a_1ls, for example, escapes  are defined by two-
have the Wada property, because théy have smoath comp |_menS|ona}I su.rfaces, and the CO'ndItIOI’) for the occurrence of
’ R/pe | basins is that the one-dimensional intersections of

nents(although the fractal component of the basin may b L . . X
Wada. This means that systems can only have Wada basi%hose surfaces have to lie within forbidden regions. The basin

. ; ; . ; . Tansition studied in10] is actually a type I-type Il transi-
i Fhe_fe are forb@d_en regions in the configuration spdne tion, although this terminology was not used there. This tran-
this is not a sufficient condition In the example presented

sition has a very different origin from the one we presented

above, the type ll-type | transition is also a non—Wada—h : ; :
’ i . . re, and i rely three-dimensional phenomenon.
Wada transition. An important and widely used definition of ere, and is a purely three-dimensional phenomeno

escapes in scattering systems is that in which each escapghis work was supported by FAPESP and OKRysics.
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